cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368004 Numerator of the greatest probability that a particular fixed polyomino with n cells appears as the image of a simple random walk on the square lattice.

This page as a plain text file.
%I A368004 #5 Dec 21 2023 15:44:30
%S A368004 1,1,1,4,97,2495,98576101,790070277194753299070819,
%T A368004 1697817285476742288131092,
%U A368004 301424494727669492958807965129775458632594691220000993251280413656197020195992465248816242330162
%N A368004 Numerator of the greatest probability that a particular fixed polyomino with n cells appears as the image of a simple random walk on the square lattice.
%C A368004 a(n) is the numerator of the maximum of A368000/A368001 over the n-th row. See A368000 for details.
%H A368004 Pontus von Brömssen, <a href="/A368004/b368004.txt">Table of n, a(n) for n = 1..13</a>
%H A368004 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%e A368004 For 1 <= n <= 13, the following are all polyominoes, up to reflections and rotations, that have the maximum probabilities for their respective sizes. Except for n = 3, there is just one such polyomino (again, up to reflections and rotations).
%e A368004                     _           _
%e A368004         _    _     | |   _ _   | |_
%e A368004    _   | |  | |_   | |  |   |  |   |
%e A368004   |_|  |_|  |_ _|  |_|  |_ _|  |_ _|
%e A368004    _ _      _ _    _ _      _ _ _
%e A368004   |   |   _|   |  |   |_   |     |
%e A368004   |   |  |    _|  |     |  |     |
%e A368004   |_ _|  |_ _|    |_ _ _|  |_ _ _|
%e A368004      _ _    _ _      _ _ _      _ _
%e A368004    _|   |  |   |_   |     |   _|   |_
%e A368004   |     |  |     |  |     |  |       |
%e A368004   |    _|  |     |  |     |  |      _|
%e A368004   |_ _|    |_ _ _|  |_ _ _|  |_ _ _|
%Y A368004 Cf. A367677, A367766, A367998, A368000, A368001, A368002, A368005 (denominators).
%K A368004 nonn,frac
%O A368004 1,4
%A A368004 _Pontus von Brömssen_, Dec 21 2023