cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368033 E.g.f. satisfies A(x) = log(1 + x/(1 - A(x))^2).

This page as a plain text file.
%I A368033 #39 Mar 29 2024 05:16:04
%S A368033 0,1,3,26,370,7334,186468,5787144,212100208,8964974016,429304991880,
%T A368033 22971063265776,1358260804832160,87949592273821680,
%U A368033 6189420503357272608,470384337802047909120,38393707193347187344896,3349704214386311986028160
%N A368033 E.g.f. satisfies A(x) = log(1 + x/(1 - A(x))^2).
%H A368033 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A368033 E.g.f.: Series_Reversion( (1 - x)^2 * (exp(x) - 1) ).
%F A368033 a(n) = Sum_{k=1..n} (2*n+k-2)!/(2*n-1)! * Stirling1(n,k).
%F A368033 a(n) ~ LambertW(2*exp(1))^n * n^(n-1) / (sqrt(2*(1 + LambertW(2*exp(1)))) * exp(n) * (2 - LambertW(2*exp(1)))^(3*n - 1)). - _Vaclav Kotesovec_, Mar 29 2024
%o A368033 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^2*(exp(x)-1)))))
%o A368033 (PARI) a(n) = sum(k=1, n, (2*n+k-2)!/(2*n-1)!*stirling(n, k, 1));
%Y A368033 Cf. A371370, A371371.
%Y A368033 Cf. A371342.
%K A368033 nonn
%O A368033 0,3
%A A368033 _Seiichi Manyama_, Mar 20 2024