This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368038 #8 Dec 09 2023 07:08:36 %S A368038 2,6,3,8,14,9,12,24,5,12,16,30,41,36,24,18,56,7,15,28,36,48,48,24,62, %T A368038 36,105,20,40,84,39,64,72,54,48,120,21,36,87,84,140,112,60,42,144,11, %U A368038 64,30,72,126,96,72,108,96,233,28,76,60,120,54,112,180,117,84 %N A368038 The sum of non-unitary divisors of the nonsquarefree numbers. %C A368038 The positive terms of A048146, since A048146(k) = 0 if and only if k is squarefree (A005117). %H A368038 Amiram Eldar, <a href="/A368038/b368038.txt">Table of n, a(n) for n = 1..10000</a> %F A368038 a(n) = A048146(A013929(n)). %F A368038 Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/2)*(1-1/zeta(3))/(1-1/zeta(2))^2 = 0.899359898779... . %t A368038 f[p_, e_] := (p^(e+1)-1)/(p-1); nusigma[n_] := Module[{fct = FactorInteger[n]}, If[n == 1, 0, Times @@ f @@@ fct - Times @@ (1 + Power @@@ fct)]]; Select[Array[nusigma, 200], # > 0 &] %o A368038 (PARI) lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(sigma(f) - prod(i=1, #f~, 1+f[i,1]^f[i,2]), ", ")));} %Y A368038 Cf. A005117, A048146, A013929. %Y A368038 Cf. A084936, A174961, A275699, A368039, A368040. %Y A368038 Cf. A002117, A013661, A072691, A229099. %K A368038 nonn %O A368038 1,1 %A A368038 _Amiram Eldar_, Dec 09 2023