A368045 Triangle read by rows. T(n, k) = (k*(k + 1)*(2*k + 1) + n*(n + 1)*(2*n + 1)) / 6.
0, 1, 2, 5, 6, 10, 14, 15, 19, 28, 30, 31, 35, 44, 60, 55, 56, 60, 69, 85, 110, 91, 92, 96, 105, 121, 146, 182, 140, 141, 145, 154, 170, 195, 231, 280, 204, 205, 209, 218, 234, 259, 295, 344, 408, 285, 286, 290, 299, 315, 340, 376, 425, 489, 570
Offset: 0
Examples
Triangle T(n, k) starts: [0] [ 0] [1] [ 1, 2] [2] [ 5, 6, 10] [3] [ 14, 15, 19, 28] [4] [ 30, 31, 35, 44, 60] [5] [ 55, 56, 60, 69, 85, 110] [6] [ 91, 92, 96, 105, 121, 146, 182] [7] [140, 141, 145, 154, 170, 195, 231, 280] [8] [204, 205, 209, 218, 234, 259, 295, 344, 408] [9] [285, 286, 290, 299, 315, 340, 376, 425, 489, 570]
Crossrefs
Programs
-
Mathematica
Module[{n=1},NestList[Append[#+n^2,Last[#]+2(n++^2)]&,{0},10]] (* or *) Table[(k(k+1)(2k+1)+n(n+1)(2n+1))/6,{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 10 2023 *)
-
Python
from functools import cache @cache def Trow(n: int) -> list[int]: if n == 0: return [0] row = Trow(n - 1) + [0] for k in range(n): row[k] += n * n row[n] = row[n - 1] + n * n return row print([k for n in range(10) for k in Trow(n)])
Comments