This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368055 #26 Apr 05 2024 10:41:59 %S A368055 5,11,7,29,5,19,11,23,5,53,29,11,5,103,7,191,5,29,23,47,5,11,53,19,5, %T A368055 59,7,311,5,23,103,11,5,149,191,53,5,83,7,173,5,11,47,283,5,29,11,103, %U A368055 5,107,7,11,5,191,59,709,5,367,311,19,5,11,7,269,5,47,11,569,5,293,149,11 %N A368055 Smallest prime number p such that x^n + y^n + z^n mod p does not take all values on Z/pZ. %C A368055 If there exists some prime p > 3 such that p-1 divides n, then x^n (mod p) is either 0 or 1 for all integers x, therefore giving an upper bound of a(n) <= p. %H A368055 Chai Wah Wu, <a href="/A368055/b368055.txt">Table of n, a(n) for n = 4..5226</a> (terms 4..500 from Robert Israel) %F A368055 a(n+k*(a(n)-1)) <= a(n). - _Robert Israel_, Jan 26 2024 %e A368055 For n = 4, x^4 + y^4 + z^4 attains all values on Z/2Z and Z/3Z, but x^4 + y^4 + z^4 == 4 (mod 5) has no solution, so a(4) = 5. %e A368055 For n = 5, x^5 + y^5 + z^5 attains all values on Z/2Z, Z/3Z, Z/5Z, and Z/7Z, but x^5 + y^5 + z^5 == 4 (mod 11) has no solution, so a(5) = 11. %p A368055 f:= proc(n) local p,s,t,T,S,S2,S3; %p A368055 p:= 2; %p A368055 do %p A368055 p:= nextprime(p); %p A368055 T:= {$0..p-1}: %p A368055 S:= {seq(s^n mod p,s=0..p-1)}; %p A368055 if S = T then next fi; %p A368055 S2:= {seq(seq(s+t mod p, s=S),t=S)}; %p A368055 if S2 = T then next fi; %p A368055 S3:= {seq(seq(s+t mod p, s=S),t=S2)}: %p A368055 if S3 <> T then return p fi %p A368055 od %p A368055 end proc: %p A368055 map(f, [$4..100]); # _Robert Israel_, Jan 26 2024 %o A368055 (SageMath) %o A368055 def a(n): %o A368055 for p in Primes(): %o A368055 all_values = set() %o A368055 for x in range(p): %o A368055 for y in range(p): %o A368055 for z in range(p): all_values.add((x^n+y^n+z^n)%p) %o A368055 if len(all_values) < p: return p %o A368055 (Python) %o A368055 from itertools import combinations_with_replacement %o A368055 from sympy import nextprime %o A368055 def A368055(n): %o A368055 p = 1 %o A368055 while (p:=nextprime(p)): %o A368055 pset = set(q:=tuple(pow(x,n,p) for x in range(p))) %o A368055 if not all(any((k-a[0]-a[1])%p in pset for a in combinations_with_replacement(q,2)) for k in range(p)): %o A368055 return p # _Chai Wah Wu_, Apr 04 2024 %Y A368055 Cf. A367689. %K A368055 nonn %O A368055 4,1 %A A368055 _Robin Visser_, Dec 09 2023