This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368062 #108 Dec 19 2024 11:46:20 %S A368062 0,36,655,1258,6208,12508,45715,65455,75385,125008,235297,1250008, %T A368062 2857144,3214288,4210528,6545455,6792453,12500008,34615386,47058824, %U A368062 87671233,125000008,654545455,1250000008,9529411765,12500000008,39130434783,45714285715,65454545455,75384615385 %N A368062 Numbers k such that k = A257850(k) + A257297(k). %H A368062 Kevin Ryde, <a href="/A368062/b368062.txt">Table of n, a(n) for n = 1..700</a> %H A368062 Nicolas Bělohoubek, <a href="/A368062/a368062_1.txt">C# program</a> %H A368062 Nicolas Bělohoubek, <a href="/A368062/a368062_4.txt">Subsequences of form A-(B)-C</a> %H A368062 Kevin Ryde, <a href="/A368062/a368062.gp.txt">PARI/GP Code</a> %e A368062 0 = 0*0 + 0*0; %e A368062 36 = 3*6 + 3*6; %e A368062 655 = 6*55 + 65*5; %e A368062 6208 = 6*208 + 620*8; %e A368062 ... %t A368062 Select[Range[0,10^6], Part[digits=IntegerDigits[#],1]FromDigits[Drop[digits,1]] + FromDigits[Drop[digits,-1]]Part[digits,Length[digits]] == # &] (* _Stefano Spezia_, Dec 10 2023 *) %o A368062 (Python) %o A368062 def ok(n): %o A368062 if n < 10: return n == 0 %o A368062 s = str(n) %o A368062 return n == int(s[0])*int(s[1:]) + (n%10)*(n//10) %o A368062 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Dec 10 2023 %o A368062 (Python) # faster for generating initial segment of sequence %o A368062 from itertools import count, islice %o A368062 def agen(): # generator of terms %o A368062 yield 0 %o A368062 for digits in count(2): %o A368062 for first in range(1, 10): %o A368062 base = first*10**(digits-1) %o A368062 for rest in range(10**(digits-1)): %o A368062 n = base + rest %o A368062 if first*rest + (n%10)*(n//10) == n: %o A368062 yield n %o A368062 print("...", digits, first, time()-time0, alst) %o A368062 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Dec 10 2023 %o A368062 (PARI) \\ See links. %Y A368062 Cf. A257850, A257297. %K A368062 nonn,base %O A368062 1,2 %A A368062 _Nicolas Bělohoubek_, Dec 10 2023 %E A368062 a(24)-a(30) from _Michael S. Branicky_, Dec 10 2023