cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368068 a(n) = Product_{i=1..n, j=1..n} (2*i^2 + 5*i*j + 2*j^2).

This page as a plain text file.
%I A368068 #5 Dec 11 2023 05:29:00
%S A368068 1,9,129600,40327580160000,1311346674278439321600000000,
%T A368068 13821139470331790817454891043295068160000000000,
%U A368068 114180111981355345833797461507302737916551512227408406118400000000000000
%N A368068 a(n) = Product_{i=1..n, j=1..n} (2*i^2 + 5*i*j + 2*j^2).
%F A368068 a(n) = Product_{i=1..n, j=1..n} (i + 2*j) * (2*i + j).
%F A368068 a(n) = A324402(n)^2.
%F A368068 a(n) ~ A * 3^(9*n*(n+1)/2 + 11/12) * n^(2*n^2 - 11/12) / (Pi * 2^(2*n^2 + 3*n + 17/12) * exp(3*n^2 + 1/12)), where A is the Glaisher-Kinkelin constant A074962.
%t A368068 Table[Product[2*i^2 + 5*i*j + 2*j^2, {i, 1, n}, {j, 1, n}], {n, 0, 7}]
%Y A368068 Cf. A324402, A368065.
%K A368068 nonn
%O A368068 0,2
%A A368068 _Vaclav Kotesovec_, Dec 10 2023