This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368070 #33 Jun 03 2025 08:42:49 %S A368070 1,1,2,1,3,5,3,1,4,11,16,9,6,9,4,1,5,19,40,26,35,61,40,14,10,26,35,19, %T A368070 10,14,5,1,6,29,78,55,99,181,132,50,64,181,272,155,111,169,78,20,15, %U A368070 55,111,71,90,155,99,34,20,50,64,34,15,20,6,1,7,41,133,99 %N A368070 a(n) is the number of sequences of binary words (w_1, ..., w_k) such that w_1 corresponds to the binary expansion of n (without leading zeros), for m = 1..k-1, w_{m+1} is obtained by removing one bit from w_m, and w_k is the empty word. %C A368070 Leading zeros may appear in binary words w_2, ..., w_{k-1}. %C A368070 a(n) gives the number of ways to erase the binary expansion of n bit by bit. %H A368070 Rémy Sigrist, <a href="/A368070/b368070.txt">Table of n, a(n) for n = 0..8192</a> %H A368070 Rémy Sigrist, <a href="/A368070/a368070.gp.txt">PARI program</a> %H A368070 Natalia L. Skirrow, <a href="/wiki/User:Nathan_L._Skirrow/bitwise_permutations">bitwise permutations</a> %H A368070 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A368070 a(n) = 1 iff n belongs to A000225. %F A368070 a(2^k) = k + 1 for any k >= 0. %F A368070 a(n) >= A367019(n). %F A368070 a(n) <= A383254(n). (See comment there) - _Natalia L. Skirrow_, Apr 20 2025 %e A368070 For n = 5: %e A368070 - the binary expansion of 5 is "101", %e A368070 - we have the following appropriate sequences of binary words: %e A368070 ("101", "11", "1", "") %e A368070 ("101", "10", "1", "") %e A368070 ("101", "10", "0", "") %e A368070 ("101", "01", "1", "") %e A368070 ("101", "01", "0", "") %e A368070 - hence a(5) = 5. %o A368070 (PARI) \\ See Links section. %o A368070 (Python) %o A368070 def A368070(n): %o A368070 m=0 %o A368070 r=[1] %o A368070 for k in range(n.bit_length()): %o A368070 if m!=(m:=n>>k&1): r=r[::-1] %o A368070 for j in range(k): r[j+1]+=r[j] %o A368070 r.insert(0,0) %o A368070 return sum(r) # _Natalia L. Skirrow_, Apr 20 2025 %o A368070 (Python) %o A368070 from fractions import Fraction as frac %o A368070 inte=lambda p: [0]+[frac(c,i+1) for i,c in enumerate(p)] %o A368070 from math import factorial as fact %o A368070 def A368070(n): %o A368070 r=[1] %o A368070 for k in range(n.bit_length()): %o A368070 i=inte(r) %o A368070 r=i if n>>k&1 else [sum(i)]+[-c for c in i[1:]] %o A368070 return int(fact(n.bit_length()+1)*sum(inte(r))) %o A368070 #without the multiplication, this is the probability that a sequence of real numbers in [0,1] satisfies the chain of inequalities. # _Natalia L. Skirrow_, Apr 20 2025 %Y A368070 See A060351 and A367019 for similar sequences. %Y A368070 Cf. A000225. %K A368070 nonn,base %O A368070 0,3 %A A368070 _Rémy Sigrist_, Dec 10 2023