This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368077 #14 May 01 2025 13:24:08 %S A368077 47,59,89,94,117,118,119,123,147,173,189,198,214,219,221,222,223,233, %T A368077 237,238,239,243,244,247,248,297,298,309,313,317,318,319,323,339,344, %U A368077 345,346,347,348,363,366,367,368,369,373,397,398,409,413,414,417,418,421,422,423,429,433,437,438,439 %N A368077 Numbers k such that row k of Pascal's triangle mod 10 contains all the numbers 0 to 9. %C A368077 Numbers k such that A208280(k) = 10. %H A368077 Robert Israel, <a href="/A368077/b368077.txt">Table of n, a(n) for n = 1..10000</a> %e A368077 a(3) = 89 is a term because %e A368077 binomial(89,15) = 38163061637050680 == 0 (mod 10), %e A368077 binomial(89,0) = 1 == 1 (mod 10), %e A368077 binomial(89,5) = 41507642 == 2 (mod 10), %e A368077 binomial(89,8) = 70625252863 == 3 (mod 10), %e A368077 binomial(89,3) = 113564 == 4 (mod 10), %e A368077 binomial(89,16) = 176504160071359395 == 5 (mod 10), %e A368077 binomial(89,2) = 3916 == 6 (mod 10), %e A368077 binomial(89,9) = 635627275767 == 7 (mod 10), %e A368077 binomial(89,6) = 581106988 == 8 (mod 10), and %e A368077 binomial(89,1) = 89 == 9 (mod 10). %p A368077 filter:= proc(n) local k,S; %p A368077 S:= {$0..9}: %p A368077 for k from 0 to n/2 do %p A368077 S:= S minus {(binomial(n,k) mod 10)}; %p A368077 if S = {} then return true fi %p A368077 od; %p A368077 false %p A368077 end proc: %p A368077 select(filter, [$1..1000]); # _Robert Israel_, Dec 10 2023 %o A368077 (Python) %o A368077 from itertools import count, islice %o A368077 def A368077_gen(): # generator of terms %o A368077 a, b = [], set(range(10)) %o A368077 for i in count(0): %o A368077 c, d = 0, [] %o A368077 for k in a: %o A368077 d.append((c+k)%10) %o A368077 c = k %o A368077 a = d+[1] %o A368077 if b.issubset(set(a)): yield i %o A368077 A368077_list = list(islice(A368077_gen(),30)) # _Chai Wah Wu_, May 01 2025 %Y A368077 Cf. A208280. %K A368077 nonn,base %O A368077 1,1 %A A368077 _Robert Israel_, Dec 10 2023