This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368080 #6 Dec 12 2023 08:20:15 %S A368080 0,5,83,442,2140,8980,34960,124124,418816 %N A368080 Number of Qbar-isomorphism classes of elliptic curves E/Q with good reduction outside the first n prime numbers. %C A368080 Two elliptic curves are isomorphic over Qbar (the algebraic numbers) if and only if they share the same j-invariant, thus a(n) is also the number of distinct j-invariants of elliptic curves E/Q with good reduction outside the first n prime numbers. %D A368080 N. M. Stephens, The Birch Swinnerton-Dyer Conjecture for Selmer curves of positive rank, Ph.D. Thesis (1965), The University of Manchester. %H A368080 M. A. Bennett, A. Gherga, and A. Rechnitzer, <a href="https://doi.org/10.1090/mcom/3370">Computing elliptic curves over Q</a>, Math. Comp., 88(317):1341-1390, 2019. %H A368080 A. J. Best and B. Matschke, <a href="https://github.com/elliptic-curve-data/ec-data-S6">Elliptic curves with good reduction outside {2, 3, 5, 7, 11, 13}</a>. %H A368080 A. J. Best and B. Matschke, <a href="https://arxiv.org/abs/2007.10535">Elliptic curves with good reduction outside of the first six primes</a>, arXiv:2007.10535 [math.NT], 2020. %H A368080 F. B. Coghlan, <a href="https://www.proquest.com/openview/451c146777dad63e754d1a3d0f9eb5ee">Elliptic Curves with Conductor N = 2^m 3^n</a>, Ph.D. Thesis (1967), The University of Manchester. %H A368080 B. Matschke, <a href="https://github.com/bmatschke/s-unit-equations/tree/main/elliptic-curve-tables">Elliptic curve tables</a>. %H A368080 A. P. Ogg, <a href="https://doi.org/10.1017/S0305004100039670">Abelian curves of 2-power conductor</a>, Proc. Cambridge Philos. Soc. 62 (1966), 143-148. %H A368080 R. von Känel and B. Matschke, <a href="https://arxiv.org/abs/1605.06079">Solving S-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture</a>, arXiv:1605.06079 [math.NT], 2016. %e A368080 For n = 0, Tate proved there are no elliptic curves over Q with good reduction everywhere, so a(0) = 0. %e A368080 For n = 1, there are 24 elliptic curves over Q with good reduction outside 2, classified by Ogg (1966). These are divided into a(1) = 5 Qbar-isomorphism classes, where the 5 corresponding j-invariants are given by 128, 1728, 8000, 10976, and 287496 (sequence A332545). %o A368080 (Sage) # This is very slow for n > 2 %o A368080 def a(n): %o A368080 S = Primes()[:n] %o A368080 EC = EllipticCurves_with_good_reduction_outside_S(S) %o A368080 return len(set(E.j_invariant() for E in EC)) %Y A368080 Cf. A332545, A361661. %K A368080 nonn,more %O A368080 0,2 %A A368080 _Robin Visser_, Dec 10 2023