cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368083 Numbers k such that k^2 + k + 1 and k^2 + k + 2 are both squarefree numbers.

Original entry on oeis.org

0, 3, 4, 7, 8, 11, 12, 16, 19, 20, 23, 24, 27, 28, 31, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 71, 72, 75, 76, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 103, 104, 107, 111, 112, 115, 119, 120, 123, 124, 127, 131, 132, 135, 139, 140, 143
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2023

Keywords

Comments

Dimitrov (2023) proved that this sequence is infinite and gave the formula for its asymptotic density.

Examples

			0 is a term since 0^2 + 0 + 1 = 1 and 0^2 + 0 + 2 = 2 are both squarefree numbers.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 150], And @@ SquareFreeQ /@ (#^2 + # + {1, 2}) &]
  • PARI
    is(k) = {my(m = k^2 + k + 1); issquarefree(m) && issquarefree(m + 1);}