This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368090 #10 Dec 15 2023 06:27:32 %S A368090 1,0,2,0,3,4,0,4,6,8,0,5,17,12,16,0,6,22,34,24,32,0,7,43,71,68,48,64, %T A368090 0,8,52,122,142,136,96,128,0,9,86,197,325,284,272,192,256,0,10,100, %U A368090 350,502,650,568,544,384,512 %N A368090 Triangle read by rows. T(n, k) = Sum_{p in P(n, k)} Product_{r in p}(r + 1), where P(n, k) are the partitions of n with length k. %e A368090 Triangle T(n, k) starts: %e A368090 [0] [1] %e A368090 [1] [0, 2] %e A368090 [2] [0, 3, 4] %e A368090 [3] [0, 4, 6, 8] %e A368090 [4] [0, 5, 17, 12, 16] %e A368090 [5] [0, 6, 22, 34, 24, 32] %e A368090 [6] [0, 7, 43, 71, 68, 48, 64] %e A368090 [7] [0, 8, 52, 122, 142, 136, 96, 128] %e A368090 [8] [0, 9, 86, 197, 325, 284, 272, 192, 256] %e A368090 [9] [0, 10, 100, 350, 502, 650, 568, 544, 384, 512] %o A368090 (SageMath) %o A368090 def T(n, k): %o A368090 return sum(product(r+1 for r in p) for p in Partitions(n, length=k)) %o A368090 for n in range(10): print([T(n, k) for k in range(n + 1)]) %Y A368090 Cf. A238963, A368091, A074141 (row sums). %K A368090 nonn,tabl %O A368090 0,3 %A A368090 _Peter Luschny_, Dec 11 2023