This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368091 #7 Dec 14 2023 08:57:22 %S A368091 1,0,1,0,2,1,0,3,2,1,0,4,7,2,1,0,5,10,7,2,1,0,6,22,18,7,2,1,0,7,28,34, %T A368091 18,7,2,1,0,8,50,62,50,18,7,2,1,0,9,60,121,86,50,18,7,2,1,0,10,95,182, %U A368091 189,118,50,18,7,2,1 %N A368091 Triangle read by rows. T(n, k) = Sum_{p in P(n, k)} Product_{r in p} r, where P(n, k) are the partitions of n with length k. %e A368091 Table T(n, k) starts: %e A368091 [0] [1] %e A368091 [1] [0, 1] %e A368091 [2] [0, 2, 1] %e A368091 [3] [0, 3, 2, 1] %e A368091 [4] [0, 4, 7, 2, 1] %e A368091 [5] [0, 5, 10, 7, 2, 1] %e A368091 [6] [0, 6, 22, 18, 7, 2, 1] %e A368091 [7] [0, 7, 28, 34, 18, 7, 2, 1] %e A368091 [8] [0, 8, 50, 62, 50, 18, 7, 2, 1] %e A368091 [9] [0, 9, 60, 121, 86, 50, 18, 7, 2, 1] %o A368091 (SageMath) %o A368091 def T(n, k): %o A368091 return sum(product(r for r in p) for p in Partitions(n, length=k)) %o A368091 for n in range(10): print([T(n, k) for k in range(n + 1)]) %Y A368091 Cf. A368090, A074141, A023855, A006906 (row sums). %K A368091 nonn,tabl %O A368091 0,5 %A A368091 _Peter Luschny_, Dec 11 2023