This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368092 #9 Dec 14 2023 16:28:41 %S A368092 1,3,9,135,405,8505,127575,382725,1148175,189448875,3978426375, %T A368092 155158628625,2327379429375,6982138288125,20946414864375, %U A368092 37389350532909375,112168051598728125,6393578941127503125,1054940525286038015625,3164821575858114046875,66461253093020394984375 %N A368092 a(n) = A160014(m, n) * a(n - 1) for m = 2 and n > 0, a(0) = 1. %C A368092 A160014 are the generalized Clausen numbers. For m = 0 the formula computes the cumulative radical A048803, for m = 1 the Hirzebruch numbers A091137. %F A368092 a(n) = 2^(n mod 2 - n)*lcm_{p in Partitions(n)} (Product_{t in p}(t + 2)). %F A368092 a(n) = 2^(n mod 2 - n)*A368048(n). %F A368092 a(n) = A368117(n) * a(n-1) for n > 0. %o A368092 (SageMath) %o A368092 from functools import cache %o A368092 @cache %o A368092 def a_rec(n): %o A368092 if n == 0: return 1 %o A368092 p = mul(s for s in map(lambda i: i + 2, divisors(n)) if is_prime(s)) %o A368092 return p * a_rec(n - 1) %o A368092 print([a_rec(n) for n in range(21)]) %o A368092 # Alternatively, but less efficient: %o A368092 def a(n): return (2**(n%2 - n) * lcm(product(r + 2 for r in p) for p in Partitions(n))) %Y A368092 Cf. A160014, A048803 (m=0), A091137 (m=1), this sequence (m=2), A368093 (array), A368048, A368117. %K A368092 nonn %O A368092 0,2 %A A368092 _Peter Luschny_, Dec 12 2023