A368093 Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Examples
Array A(m, n) starts: [0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803 [1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137 [2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092 [3] 1, 1, 5, 5, 175, 175, 875, 875, ... [4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ... [5] 1, 1, 7, 7, 49, 49, 3773, 3773, ... [6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ... [7] 1, 1, 1, 1, 11, 11, 143, 143, ... [8] 1, 1, 1, 11, 11, 143, 1573, 1573, ... [9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
Crossrefs
Programs
-
SageMath
from functools import cache def Clausen(n, k): return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s)) @cache def CumProdClausen(m, n): return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1 for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
Formula
A(m, n) = A160014(m, n) * A(m, n - 1) for n > 0 and A(m, 0) = 1.
Comments