This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368095 #8 Dec 26 2023 08:33:49 %S A368095 1,1,2,4,8,17,39,86,208,508,1304 %N A368095 Number of non-isomorphic set-systems of weight n satisfying a strict version of the axiom of choice. %C A368095 A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. %C A368095 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %e A368095 Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 set-systems: %e A368095 {1} {12} {123} {1234} {12345} %e A368095 {1}{2} {1}{23} {1}{234} {1}{2345} %e A368095 {2}{12} {12}{34} {12}{345} %e A368095 {1}{2}{3} {13}{23} {14}{234} %e A368095 {3}{123} {23}{123} %e A368095 {1}{2}{34} {4}{1234} %e A368095 {1}{3}{23} {1}{2}{345} %e A368095 {1}{2}{3}{4} {1}{23}{45} %e A368095 {1}{24}{34} %e A368095 {1}{4}{234} %e A368095 {2}{13}{23} %e A368095 {2}{3}{123} %e A368095 {3}{13}{23} %e A368095 {4}{12}{34} %e A368095 {1}{2}{3}{45} %e A368095 {1}{2}{4}{34} %e A368095 {1}{2}{3}{4}{5} %t A368095 Table[Length[Select[bmp[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]], {n,0,10}] %Y A368095 For labeled graphs we have A133686, complement A367867. %Y A368095 For unlabeled graphs we have A134964, complement A140637. %Y A368095 For set-systems we have A367902, complement A367903. %Y A368095 These set-systems have BII-numbers A367906, complement A367907. %Y A368095 The complement is A368094, connected A368409. %Y A368095 Repeats allowed: A368098, ranks A368100, complement A368097, ranks A355529. %Y A368095 Minimal multiset partitions not of this type are counted by A368187. %Y A368095 The connected case is A368410. %Y A368095 Factorizations of this type are counted by A368414, complement A368413. %Y A368095 Allowing repeated edges gives A368422, complement A368421. %Y A368095 A000110 counts set-partitions, non-isomorphic A000041. %Y A368095 A003465 counts covering set-systems, unlabeled A055621. %Y A368095 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A368095 A058891 counts set-systems, unlabeled A000612, connected A323818. %Y A368095 A283877 counts non-isomorphic set-systems, connected A300913. %Y A368095 Cf. A001055, A007717, A302545, A306005, A316983, A319560, A321194, A321405, A330223, A367769, A367901. %K A368095 nonn,more %O A368095 0,3 %A A368095 _Gus Wiseman_, Dec 24 2023