This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368096 #9 Jan 11 2024 20:04:08 %S A368096 1,0,1,0,1,1,0,1,2,1,0,1,4,3,1,0,1,5,8,3,1,0,1,8,18,13,3,1,0,1,9,32, %T A368096 37,15,3,1,0,1,13,55,96,59,16,3,1,0,1,14,91,209,196,74,16,3,1,0,1,19, %U A368096 138,449,573,313,82,16,3,1,0,1,20,206,863,1529,1147,403,84,16,3,1 %N A368096 Triangle read by rows where T(n,k) is the number of non-isomorphic set-systems of length k and weight n. %C A368096 A set-system is a finite set of finite nonempty sets. %C A368096 Conjecture: Column k = 2 is A101881. %H A368096 Andrew Howroyd, <a href="/A368096/b368096.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A368096 Triangle begins: %e A368096 1 %e A368096 0 1 %e A368096 0 1 1 %e A368096 0 1 2 1 %e A368096 0 1 4 3 1 %e A368096 0 1 5 8 3 1 %e A368096 0 1 8 18 13 3 1 %e A368096 0 1 9 32 37 15 3 1 %e A368096 0 1 13 55 96 59 16 3 1 %e A368096 0 1 14 91 209 196 74 16 3 1 %e A368096 0 1 19 138 449 573 313 82 16 3 1 %e A368096 ... %e A368096 Non-isomorphic representatives of the set-systems counted in row n = 5: %e A368096 . {12345} {1}{1234} {1}{2}{123} {1}{2}{3}{12} {1}{2}{3}{4}{5} %e A368096 {1}{2345} {1}{2}{134} {1}{2}{3}{14} %e A368096 {12}{123} {1}{2}{345} {1}{2}{3}{45} %e A368096 {12}{134} {1}{12}{13} %e A368096 {12}{345} {1}{12}{23} %e A368096 {1}{12}{34} %e A368096 {1}{23}{24} %e A368096 {1}{23}{45} %t A368096 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,___}]; %t A368096 mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; %t A368096 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; %t A368096 Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&And@@UnsameQ@@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}] %o A368096 (PARI) %o A368096 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} %o A368096 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A368096 K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} %o A368096 G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!} %o A368096 T(n)={[Vecrev(p) | p <- Vec(G(n))]} %o A368096 { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Jan 11 2024 %Y A368096 Row sums are A283877, connected case A300913. %Y A368096 For multiset partitions we have A317533. %Y A368096 Counting connected components instead of edges gives A321194. %Y A368096 For set multipartitions we have A334550. %Y A368096 For strict multiset partitions we have A368099. %Y A368096 A000110 counts set-partitions, non-isomorphic A000041. %Y A368096 A003465 counts covering set-systems, unlabeled A055621. %Y A368096 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A368096 A049311 counts non-isomorphic set multipartitions, connected A056156. %Y A368096 A058891 counts set-systems, unlabeled A000612, connected A323818. %Y A368096 A316980 counts non-isomorphic strict multiset partitions, connected A319557. %Y A368096 A319559 counts non-isomorphic T_0 set-systems, connected A319566. %Y A368096 Cf. A101881, A255903, A302545, A306005, A317532, A317794, A317795, A319560, A321405, A368094, A368095. %K A368096 nonn,tabl %O A368096 0,9 %A A368096 _Gus Wiseman_, Dec 28 2023 %E A368096 Terms a(66) and beyond from _Andrew Howroyd_, Jan 11 2024