A368098 Number of non-isomorphic multiset partitions of weight n satisfying a strict version of the axiom of choice.
1, 1, 3, 7, 21, 54, 165, 477, 1501, 4736, 15652
Offset: 0
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1},{2}} {{1,2,3}} {{1,2,2,2}} {{1},{2,2}} {{1,2,3,3}} {{1},{2,3}} {{1,2,3,4}} {{2},{1,2}} {{1},{1,2,2}} {{1},{2},{3}} {{1,1},{2,2}} {{1,2},{1,2}} {{1},{2,2,2}} {{1,2},{2,2}} {{1},{2,3,3}} {{1,2},{3,3}} {{1},{2,3,4}} {{1,2},{3,4}} {{1,3},{2,3}} {{2},{1,2,2}} {{3},{1,2,3}} {{1},{2},{3,3}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{1},{2},{3},{4}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
These multiset partitions have ranks A368100.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; Table[Length[Union[brute/@Select[mpm[n], Select[Tuples[#],UnsameQ@@#&]!={}&]]], {n,0,6}]
Comments