This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368101 #12 Mar 23 2024 22:13:09 %S A368101 1,3,5,11,15,17,31,33,39,41,51,55,59,65,67,83,85,87,93,109,111,123, %T A368101 127,129,155,157,165,177,179,187,191,201,205,211,213,235,237,241,249, %U A368101 255,267,277,283,295,303,305,319,321,327,331,335,341,353,365,367,381 %N A368101 Numbers of which there is exactly one way to choose a different prime factor of each prime index. %C A368101 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A368101 The prime indices of 2795 are {3,6,14}, with prime factors {{3},{2,3},{2,7}}, and the only choice with different terms is {3,2,7}, so 2795 is in the sequence. %e A368101 The terms together with their prime indices of prime indices begin: %e A368101 1: {} %e A368101 3: {{1}} %e A368101 5: {{2}} %e A368101 11: {{3}} %e A368101 15: {{1},{2}} %e A368101 17: {{4}} %e A368101 31: {{5}} %e A368101 33: {{1},{3}} %e A368101 39: {{1},{1,2}} %e A368101 41: {{6}} %e A368101 51: {{1},{4}} %e A368101 55: {{2},{3}} %e A368101 59: {{7}} %e A368101 65: {{2},{1,2}} %e A368101 67: {{8}} %e A368101 83: {{9}} %e A368101 85: {{2},{4}} %e A368101 87: {{1},{1,3}} %e A368101 93: {{1},{5}} %e A368101 109: {{10}} %e A368101 111: {{1},{1,1,2}} %t A368101 prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A368101 Select[Range[100], Length[Select[Tuples[prix/@prix[#]], UnsameQ@@#&]]==1&] %Y A368101 For no choices we have A355529, odd A355535, binary A367907. %Y A368101 Positions of ones in A367771. %Y A368101 The version for binary indices is A367908, positions of ones in A367905. %Y A368101 For any number of choices we have A368100. %Y A368101 For a unique set instead of sequence we have A370647, counted by A370594. %Y A368101 A058891 counts set-systems, covering A003465, connected A323818. %Y A368101 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A368101 A124010 gives prime signature, sort A118914, length A001221, sum A001222. %Y A368101 A355741 chooses a prime factor of each prime index, multisets A355744. %Y A368101 Cf. A007716, A355737, A355739, A355740, A355745, A367904, A367906, A370584. %K A368101 nonn %O A368101 1,2 %A A368101 _Gus Wiseman_, Dec 12 2023