cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368106 The number of infinitary divisors of the powerful part of n.

This page as a plain text file.
%I A368106 #7 Dec 12 2023 08:02:05
%S A368106 1,1,1,2,1,1,1,4,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,4,2,1,4,2,1,1,1,4,1,1,
%T A368106 1,4,1,1,1,4,1,1,1,2,2,1,1,2,2,2,1,2,1,4,1,4,1,1,1,2,1,1,2,4,1,1,1,2,
%U A368106 1,1,1,8,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1
%N A368106 The number of infinitary divisors of the powerful part of n.
%H A368106 Amiram Eldar, <a href="/A368106/b368106.txt">Table of n, a(n) for n = 1..10000</a>
%F A368106 a(n) = A037445(A057521(n)).
%F A368106 Multiplicative with a(p) = 1 and a(p^e) = 2^A000120(e) for e >= 2.
%F A368106 a(n) >= 1, with equality if and only if n is squarefree (A005117).
%F A368106 a(n) <= A037445(n), with equality if and only if n is powerful (A001694).
%F A368106 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.89684906463124350536..., where f(x) = (1-x) * (Product_{k>=0} (1 + 2*x^(2^k)) - x).
%t A368106 f[p_, e_] := If[e == 1, 1, 2^DigitCount[e, 2, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368106 (PARI) a(n) = vecprod(apply(x -> if(x == 1, 1, 2^hammingweight(x)), factor(n)[, 2]));
%Y A368106 Cf. A001694, A005117, A037445, A057521.
%Y A368106 Similar sequences: A323308, A357669, A368104.
%K A368106 nonn,easy,mult
%O A368106 1,4
%A A368106 _Amiram Eldar_, Dec 12 2023