cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368107 Prime powers p^m such that p | m.

Original entry on oeis.org

4, 16, 27, 64, 256, 729, 1024, 3125, 4096, 16384, 19683, 65536, 262144, 531441, 823543, 1048576, 4194304, 9765625, 14348907, 16777216, 67108864, 268435456, 387420489, 1073741824, 4294967296, 10460353203, 17179869184, 30517578125, 68719476736, 274877906944, 282429536481
Offset: 1

Views

Author

Michael De Vlieger, Jan 15 2024

Keywords

Comments

Proper subset of A072873, which in turn is a proper subset of A342090.
This sequence represents the prime power block in A072873 and A342090.
A342090 \ {a(n)} is in A126706.
A072873 \ {{1} U {a(n)}} is in A286708, in turn a proper subset of A001694.
Contains A051674.

Examples

			This sequence contains prime powers of the following form:
  2^2, 2^4, i.e., 2^k such that k is even.
  3^3, 3^6, 3^9, i.e., 3^k such that 3 | k.
  5^5, 5^10, 5^15, i.e., 5^k such that 5 | k, etc.
		

Crossrefs

Programs

  • Maple
    N:= 10^13: # for terms <= N
    R:= NULL:
    for i from 1 do
      p:= ithprime(i);
      if p^p > N then break fi;
      R:= R, seq(p^k,k=p..floor(log[p](N)), p);
    od:
    sort([R]); # Robert Israel, Jan 16 2024
  • Mathematica
    nn = 10^12; i = 1; p = 2; While[p^p <= nn, p = NextPrime[p] ];
    MapIndexed[Set[S[First[#2]], #1] &, Prime@ Range@ PrimePi[p] ];
    Union@ Reap[
        While[j = S[i];
        While[S[i]^j < nn,
          Sow[S[i]^j]; j += S[i] ]; j > 2,
        i++] ][[-1, 1]]
  • Python
    import heapq
    from itertools import islice
    from sympy import nextprime
    def agen(): # generator of terms
        v, h, m, nextp = 4, [(4, 2)], 4, 3
        while True:
            v, p = heapq.heappop(h)
            yield v
            if v >= m:
                m = nextp**nextp
                heapq.heappush(h, (m, nextp))
                nextp = nextprime(nextp)
            heapq.heappush(h, (v*p**p, p))
    print(list(islice(agen(), 31))) # Michael S. Branicky, Jan 16 2024
    
  • Python
    from sympy import integer_nthroot, primefactors
    def A368107(n):
        def f(x):
            c = n+x
            for k in range(1,x.bit_length()):
                m = integer_nthroot(x,k)[0]
                c -= sum(1 for p in primefactors(k) if p<=m)
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/A088730(n) = 0.372116188498... . - Amiram Eldar, Jan 20 2024