This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368109 #10 Dec 28 2023 11:31:57 %S A368109 1,1,1,1,2,2,2,2,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4,2,2,2,2,4,4,4,4,2,2, %T A368109 2,2,4,4,4,4,2,2,2,2,4,4,4,4,4,4,4,4,8,8,8,8,4,4,4,4,8,8,8,8,3,3,3,3, %U A368109 6,6,6,6,3,3,3,3,6,6,6,6,6,6,6,6,12,12,12 %N A368109 Number of ways to choose a binary index of each binary index of n. %C A368109 First differs from A367912 at a(52) = 8, A367912(52) = 7. %C A368109 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}. %C A368109 Run-lengths are all 4 or 8. %F A368109 a(n) = Product_{k in A048793(n)} A000120(k). %e A368109 The binary indices of binary indices of 20 are {{1,2},{1,3}}, with choices (1,1), (1,3), (2,1), (2,3), so a(20) = 4. %e A368109 The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,1,1), (1,1,3), (1,3,2), (1,3,3), (2,1,2), (2,1,3), (2,3,2), (2,3,3), so a(52) = 8. %t A368109 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1]; %t A368109 Table[Length[Tuples[bpe/@bpe[n]]], {n,0,100}] %Y A368109 All entries appear to belong to A003586. %Y A368109 Positions of ones are A253317. %Y A368109 The version for prime indices is A355741, for multisets A355744. %Y A368109 Choosing a multiset (not sequence) gives A367912, firsts A367913. %Y A368109 Positions of first appearances are A368111, sorted A368112. %Y A368109 A048793 lists binary indices, length A000120, sum A029931. %Y A368109 A058891 counts set-systems, covering A003465, connected A323818. %Y A368109 A070939 gives length of binary expansion. %Y A368109 A096111 gives product of binary indices. %Y A368109 Cf. A072639, A309326, A326031, A326702, A326753, A355731, A355739, A367771, A367905, A367906, A367915. %K A368109 nonn %O A368109 0,5 %A A368109 _Gus Wiseman_, Dec 12 2023