This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368110 #18 Mar 23 2024 22:12:40 %S A368110 1,2,3,5,6,7,9,10,11,13,14,15,17,19,21,22,23,25,26,29,30,31,33,34,35, %T A368110 37,38,39,41,42,43,45,46,47,49,51,53,55,57,58,59,61,62,63,65,66,67,69, %U A368110 70,71,73,74,75,77,78,79,82,83,85,86,87,89,91,93,94,95,97 %N A368110 Numbers of which it is possible to choose a different divisor of each prime index. %C A368110 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A368110 By Hall's marriage theorem, k is a term if and only if there is no sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, there is no divisor of k in A370348. - _Robert Israel_, Feb 15 2024 %H A368110 Robert Israel, <a href="/A368110/b368110.txt">Table of n, a(n) for n = 1..10000</a> %F A368110 Heinz numbers of the partitions counted by A239312. %e A368110 The terms together with their prime indices begin: %e A368110 1: {} %e A368110 2: {1} %e A368110 3: {2} %e A368110 5: {3} %e A368110 6: {1,2} %e A368110 7: {4} %e A368110 9: {2,2} %e A368110 10: {1,3} %e A368110 11: {5} %e A368110 13: {6} %e A368110 14: {1,4} %e A368110 15: {2,3} %e A368110 17: {7} %e A368110 19: {8} %e A368110 21: {2,4} %e A368110 22: {1,5} %e A368110 23: {9} %e A368110 25: {3,3} %e A368110 26: {1,6} %e A368110 29: {10} %e A368110 30: {1,2,3} %p A368110 filter:= proc(n) uses numtheory, GraphTheory; local B,S,F,D,E,G,t,d; %p A368110 F:= ifactors(n)[2]; %p A368110 F:= map(t -> [pi(t[1]),t[2]], F); %p A368110 D:= `union`(seq(divisors(t[1]), t = F)); %p A368110 F:= map(proc(t) local i;seq([t[1],i],i=1..t[2]) end proc,F); %p A368110 if nops(D) < nops(F) then return false fi; %p A368110 E:= {seq(seq({t,d},d=divisors(t[1])),t = F)}; %p A368110 S:= map(t -> convert(t,name), [op(F),op(D)]); %p A368110 E:= map(e -> map(convert,e,name),E); %p A368110 G:= Graph(S,E); %p A368110 B:= BipartiteMatching(G); %p A368110 B[1] = nops(F); %p A368110 end proc: %p A368110 select(filter, [$1..100]); # _Robert Israel_, Feb 15 2024 %t A368110 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A368110 Select[Range[100],Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]!={}&] %Y A368110 Partitions of this type are counted by A239312, complement A370320. %Y A368110 Positions of nonzero terms in A355739. %Y A368110 Complement of A355740. %Y A368110 For just prime divisors we have A368100, complement A355529 (odd A355535). %Y A368110 A000005 counts divisors. %Y A368110 A003963 multiplies together the prime indices of n. %Y A368110 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A368110 A120383 lists numbers divisible by all of their prime indices. %Y A368110 A324850 lists numbers divisible by the product of their prime indices. %Y A368110 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A368110 A355741 chooses prime factors of prime indices, variations A355744, A355745. %Y A368110 Cf. A000720, A076610, A111774, A335433, A335448, A340852, A355733, A355734, A355737, A355749, A370348. %K A368110 nonn %O A368110 1,2 %A A368110 _Gus Wiseman_, Dec 15 2023