This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368111 #7 Dec 18 2023 08:28:50 %S A368111 1,4,64,20,68,52,1088,84,308,1092,116,5184,820,1108,372,5188,2868, %T A368111 1140,13376,884,5204,17204,1396,13380,2932,5236,275520,19252,1908, %U A368111 13396,17268,5492,275524,84788,3956,13428,1324096,19316,6004,275540,215860,18292,13684 %N A368111 Least k such that there are exactly A003586(n) ways to choose a binary index of each binary index of k. %C A368111 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}. %e A368111 The terms together with the corresponding set-systems begin: %e A368111 1: {{1}} %e A368111 4: {{1,2}} %e A368111 64: {{1,2,3}} %e A368111 20: {{1,2},{1,3}} %e A368111 68: {{1,2},{1,2,3}} %e A368111 52: {{1,2},{1,3},{2,3}} %e A368111 84: {{1,2},{1,3},{1,2,3}} %e A368111 308: {{1,2},{1,3},{2,3},{1,4}} %e A368111 116: {{1,2},{1,3},{2,3},{1,2,3}} %e A368111 820: {{1,2},{1,3},{2,3},{1,4},{2,4}} %e A368111 372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}} %e A368111 884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}} %t A368111 nn=10000; %t A368111 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A368111 dd=Select[Range[nn],Max@@First/@FactorInteger[#]<=3&]; %t A368111 qq=Table[Length[Tuples[bpe/@bpe[n]]],{n,nn}]; %t A368111 kk=Select[Range[Length[dd]],SubsetQ[qq,Take[dd,#]]&] %t A368111 Table[Position[qq,dd[[n]]][[1,1]],{n,kk}] %Y A368111 With distinctness we have A367910, sorted A367911, firsts of A367905. %Y A368111 For multisets we have A367913, sorted A367915, firsts of A367912. %Y A368111 Positions of first appearances in A368109. %Y A368111 The sorted version is A368112. %Y A368111 A048793 lists binary indices, length A000120, sum A029931. %Y A368111 A058891 counts set-systems, covering A003465, connected A323818. %Y A368111 A070939 gives length of binary expansion. %Y A368111 A096111 gives product of binary indices. %Y A368111 Cf. A072639, A253317, A309326, A326031, A326702, A326753, A355731, A355741, A355744, A367906. %K A368111 nonn %O A368111 1,2 %A A368111 _Gus Wiseman_, Dec 17 2023