This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368112 #5 Dec 18 2023 08:28:46 %S A368112 1,4,20,52,64,68,84,116,308,372,820,884,1088,1092,1108,1140,1396,1908, %T A368112 2868,2932,3956,5184,5188,5204,5236,5492,6004,8052,13376,13380,13396, %U A368112 13428,13684,14196,16244,17204,17268,18292,19252,19316,20340,22388,24436,30580 %N A368112 Sorted positions of first appearances in A368109 (number of ways to choose a binary index of each binary index). %C A368112 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}. %e A368112 The terms together with the corresponding set-systems begin: %e A368112 1: {{1}} %e A368112 4: {{1,2}} %e A368112 20: {{1,2},{1,3}} %e A368112 52: {{1,2},{1,3},{2,3}} %e A368112 64: {{1,2,3}} %e A368112 68: {{1,2},{1,2,3}} %e A368112 84: {{1,2},{1,3},{1,2,3}} %e A368112 116: {{1,2},{1,3},{2,3},{1,2,3}} %e A368112 308: {{1,2},{1,3},{2,3},{1,4}} %e A368112 372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}} %e A368112 820: {{1,2},{1,3},{2,3},{1,4},{2,4}} %e A368112 884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}} %t A368112 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A368112 c=Table[Length[Tuples[bpe/@bpe[n]]], {n,1000}]; %t A368112 Select[Range[Length[c]], FreeQ[Take[c,#-1],c[[#]]]&] %Y A368112 For multisets we have A367915, unsorted A367913, firsts A367912. %Y A368112 Sorted positions of first appearances in A368109. %Y A368112 The unsorted version is A368111. %Y A368112 A048793 lists binary indices, length A000120, sum A029931. %Y A368112 A058891 counts set-systems, covering A003465, connected A323818. %Y A368112 A070939 gives length of binary expansion. %Y A368112 A096111 gives product of binary indices. %Y A368112 Cf. A072639, A253317, A326031, A326702, A326753, A355741, A367771, A367905, A367906, A367911, A368184. %K A368112 nonn %O A368112 1,2 %A A368112 _Gus Wiseman_, Dec 17 2023