cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368117 a(n) = Product_{(s - 2)|n, s prime} s if n > 0, a(0) = 1.

This page as a plain text file.
%I A368117 #11 Dec 15 2023 06:28:26
%S A368117 1,3,3,15,3,21,15,3,3,165,21,39,15,3,3,1785,3,57,165,3,21,345,39,3,15,
%T A368117 21,3,4785,3,93,1785,3,3,195,57,777,165,3,3,615,21,129,345,3,39,
%U A368117 922845,3,3,15,3,21,15105,3,3,4785,273,3,885,93,183,1785,3,3
%N A368117 a(n) = Product_{(s - 2)|n, s prime} s if n > 0, a(0) = 1.
%C A368117 All terms are squarefree.
%F A368117 a(n) = A160014(2, n).
%e A368117 The divisors of 15 are {1, 3, 5, 15}. Adding 2 to the divisors gives {3, 5, 7, 17}, which are all primes. Therefore a(15) = 3*5*7*17 = 1785.
%t A368117 {1}~Join~Array[Times @@ Select[Divisors[#] + 2, PrimeQ] &, 62] (* _Michael De Vlieger_, Dec 14 2023 *)
%o A368117 (SageMath)
%o A368117 def a(n): return (mul(s for s in map(lambda i: i + 2, divisors(n))
%o A368117                   if is_prime(s)) if n > 0 else 1)
%o A368117 print([a(n) for n in range(63)])
%o A368117 (PARI) a(n) = if (n>0, my(d=divisors(n)); prod(k=1, #d, if (isprime(p=d[k]+2), p, 1)), 1); \\ _Michel Marcus_, Dec 15 2023
%Y A368117 Cf. A160014, A007947 (radical of n, m=0), A141056 and A027760 (Clausen numbers, m=1).
%K A368117 nonn
%O A368117 0,2
%A A368117 _Peter Luschny_, Dec 13 2023