This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368119 #17 Dec 18 2023 18:13:32 %S A368119 1,1,1,1,1,1,1,1,2,1,1,1,3,6,1,1,1,4,15,24,1,1,1,5,28,105,120,1,1,1,6, %T A368119 45,280,945,720,1,1,1,7,66,585,3640,10395,5040,1,1,1,8,91,1056,9945, %U A368119 58240,135135,40320,1,1,1,9,120,1729,22176,208845,1106560,2027025,362880,1 %N A368119 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1). %C A368119 A(n, k) is the number of increasing (n + 1)-ary trees on k vertices. (Following a comment of _David Callan_ in A007559.) %H A368119 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>. %F A368119 Let rf(n, k) denote the rising factorial and ff(n,k) the falling factorial. %F A368119 A(n, k) = n^k * rf(1/n, k) if n > 0 else 1. %F A368119 A(n, k) = (-n)^k * ff(-1/n, k) if n > 0 else 1. %F A368119 A(n, k) = (n^k * Gamma(k + 1/n)) / Gamma(1/n) for n > 0. %F A368119 A(n, k) = ((-n)^k * Gamma(1 - 1/n)) / Gamma(1 - 1/n - k) for n > 0. %F A368119 A(n, k) = k! * [x^k](1 - n*x)^(-1/n). %F A368119 A(n, k) = [x^k] hypergeom([1, 1/n], [], n*x). %F A368119 Column n + 1 has a linear recurrence with constant coefficients and signature ((-1)^k*binomial(n+1, n-k) for k=0..n). %e A368119 Array A(n, k) starts: %e A368119 [0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 %e A368119 [1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142 %e A368119 [2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147 %e A368119 [3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559 %e A368119 [4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696 %e A368119 [5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548 %e A368119 [6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542 %e A368119 [7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754 %e A368119 [8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755 %o A368119 (SageMath) %o A368119 def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1 %o A368119 for n in range(9): print([A(n, k) for k in range(8)]) %Y A368119 Rows: A000012, A000142, A001147, A007559, A007696, A008548, A008542, A045754, A045755. %Y A368119 Columns: A000012, A000027, A000384, A011199, A011245. %Y A368119 Variant: A256268. Main diagonal: A092985. %Y A368119 Cf. A124320, A008279, A326323. %K A368119 nonn,tabl %O A368119 0,9 %A A368119 _Peter Luschny_, Dec 18 2023