This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368127 #14 Jan 07 2024 14:07:27 %S A368127 0,1,0,-1,-1,-1,0,1,1,2,2,1,0,0,-1,-2,-3,-2,-2,-1,0,0,1,2,3,3,3,2,2,1, %T A368127 0,-1,-2,-2,-3,-3,-4,-3,-3,-2,-2,-1,0,1,2,2,3,3,4,5,4,4,3,2,1,0,0,-1, %U A368127 -1,-2,-3,-4,-4,-5,-6,-5,-4,-4,-3,-2,-1,0,0,1,1,2,3,4,4,5,6,6,6,5,4,3 %N A368127 a(n) is the x-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368126. %H A368127 Hugo Pfoertner, <a href="/A368127/b368127.txt">Table of n, a(n) for n = 0..3000</a> %H A368127 Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A368127&name2=A368128&tform1=untransformed&tform2=untransformed&shift=0&radiop1=xy&drawlines=true">Plot of mapped spiral</a>, using Plot 2. %H A368127 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %o A368127 (PARI) \\ ax(n), ay(n) after Kevin Ryde's functions in A174344 and A274923. %o A368127 \\ It is assumed that the PARI programs from A367150 and A368126 have been loaded and the functions defined there are available. %o A368127 ax(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, k, -k-n), if (n<m, -k, n-3*k))}; %o A368127 ay(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, 3*k+n, k), if (n<m, k-n, -k))}; %o A368127 a368127(n) = BijectionD([ax(n), ay(n)], Bijectionk)[1]; %Y A368127 A368128 gives the corresponding y-coordinates. %Y A368127 Cf. A367150, A368126. %Y A368127 Analogous sequences, but without symmetrization: A367895, A367896. %K A368127 sign %O A368127 0,10 %A A368127 _Hugo Pfoertner_, Jan 07 2024