cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368131 a(n) = floor(n * log(4/3) / log(3/2)).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48
Offset: 0

Views

Author

Ruud H.G. van Tol, Jan 25 2024

Keywords

Comments

Highest k with 3^(n+k) <= 4^n * 2^k.

Crossrefs

Cf. A054414, A117630, A325913, A369522 (slope).

Programs

  • Mathematica
    Table[Floor[n*Log[4/3]/Log[3/2]],{n,0,68}] (* James C. McMahon, Jan 27 2024 *)
  • PARI
    alist(N) = my(a=-1, b=1, k=0); vector(N, i, a+=2; b*=3; if(logint(b, 2) < a, a++; b*=3; k++); k); \\ note that i is n+1

Formula

a(n) = floor(n * log(3) / log(3/2)) - 2*n.
a(n) = floor(n * arctanh(1/7) / arctanh(1/5)).
a(n) = A325913(n) - n.
a(n) = A117630(n) - 2*n.
a(n) = A054414(n) - 2*n - 1.