cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368134 Characteristic numbers of Markov triples in the binary tree A368546.

This page as a plain text file.
%I A368134 #21 Sep 22 2024 15:20:36
%S A368134 2,5,12,13,75,179,70,34,507,2923,1120,2673,15571,6089,408,89,3468,
%T A368134 51709,19760,113922,1701181,651838,16725,39916,3472225,20226717,
%U A368134 1354498,529673,3087111,206855,2378,233,23763,925943,353702,5273811,205543262,78545995,770133
%N A368134 Characteristic numbers of Markov triples in the binary tree A368546.
%C A368134 The characteristic number u of a Markov triple (r, m, s) is the solution in (0, m) of r * x == s (mod m). It satisfies u^2 == -1 (mod m), so that v = (u^2 + 1) / m is also an integer. The other solution in (0,m) of u^2 == -1 (mod m), namely m - u, is always greater than u, so u < m / 2.
%C A368134 The Markov tree may be formulated in terms of a set of Cohn matrices. There is a one-parameter family of such sets, parametrized by an integer c. Given a vertex of the Markov tree with Farey triple (x, y, z) and Markov triple (r, m, s), producing characteristic number u and v = (u^2 + 1) / m, the Cohn matrix C_y(c) with parameter c is
%C A368134    [               c * m + u                                       m      ]
%C A368134    [(3 * c - c^2) * m - (2 * c - 3) * u - v                (3 - c) * m - u].
%C A368134   Then the vertex is associated with a triple of Cohn matrices, (R, R S, S), where R = C_x(c), RS = C_y(c), and S = C_z(c). See A368546 for a description of Farey and Markov triples. The left child of the vertex is associated with the triple (R, R^2 S, RS) and the right child with (RS, R S^2, S).
%D A368134 Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
%H A368134 Martin Aigner, <a href="https://archive.org/details/markovstheorem100000aign">Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings</a>, [archive.org copy of the book]
%F A368134 Recurrence: The left child of the Markov triple (r, m, s) is (r, 3rm - s, m); the right child is (m, 3ms - r, s). The corresponding triple of characteristic numbers (t, u, v) has left child (t, 3ru - v, u) and right child (u, 3us - t, v). Initial Markov triple: (1, 5, 2), initial characteristic number triple: (0, 2, 1).
%e A368134 The initial rows of the binary tree are
%e A368134                                   2
%e A368134              5                                       12
%e A368134    13                 75                    179                70
%e A368134 34    507        2923   1120            2673  15571       6089   408
%o A368134 (SageMath)
%o A368134 rowM = [[1,5,2]]
%o A368134 rowU = [[0,2,1]]
%o A368134 a368134 = [2]
%o A368134 for rw in range(1,6):
%o A368134     prevRowM = rowM
%o A368134     prevRowU = rowU
%o A368134     rowM = []
%o A368134     rowU = []
%o A368134     for i in range(len(prevRowM)):
%o A368134         [r,m,s] = prevRowM[i]
%o A368134         [t,u,v] = prevRowU[i]
%o A368134         ltM = [r,3*r*m - s,m]
%o A368134         rtM = [m,3*m*s - r,s]
%o A368134         ltU = [t,3*r*u - v,u]
%o A368134         rtU = [u,3*u*s - t,v]
%o A368134         rowM = rowM + [ltM,rtM]
%o A368134         rowU = rowU + [ltU,rtU]
%o A368134         a368134 = a368134 + [ltU[1],rtU[1]]
%o A368134 a368134
%Y A368134 Cf. A368546.
%K A368134 nonn,tabf
%O A368134 0,1
%A A368134 _William P. Orrick_, Jan 11 2024