This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368134 #21 Sep 22 2024 15:20:36 %S A368134 2,5,12,13,75,179,70,34,507,2923,1120,2673,15571,6089,408,89,3468, %T A368134 51709,19760,113922,1701181,651838,16725,39916,3472225,20226717, %U A368134 1354498,529673,3087111,206855,2378,233,23763,925943,353702,5273811,205543262,78545995,770133 %N A368134 Characteristic numbers of Markov triples in the binary tree A368546. %C A368134 The characteristic number u of a Markov triple (r, m, s) is the solution in (0, m) of r * x == s (mod m). It satisfies u^2 == -1 (mod m), so that v = (u^2 + 1) / m is also an integer. The other solution in (0,m) of u^2 == -1 (mod m), namely m - u, is always greater than u, so u < m / 2. %C A368134 The Markov tree may be formulated in terms of a set of Cohn matrices. There is a one-parameter family of such sets, parametrized by an integer c. Given a vertex of the Markov tree with Farey triple (x, y, z) and Markov triple (r, m, s), producing characteristic number u and v = (u^2 + 1) / m, the Cohn matrix C_y(c) with parameter c is %C A368134 [ c * m + u m ] %C A368134 [(3 * c - c^2) * m - (2 * c - 3) * u - v (3 - c) * m - u]. %C A368134 Then the vertex is associated with a triple of Cohn matrices, (R, R S, S), where R = C_x(c), RS = C_y(c), and S = C_z(c). See A368546 for a description of Farey and Markov triples. The left child of the vertex is associated with the triple (R, R^2 S, RS) and the right child with (RS, R S^2, S). %D A368134 Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784 %H A368134 Martin Aigner, <a href="https://archive.org/details/markovstheorem100000aign">Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings</a>, [archive.org copy of the book] %F A368134 Recurrence: The left child of the Markov triple (r, m, s) is (r, 3rm - s, m); the right child is (m, 3ms - r, s). The corresponding triple of characteristic numbers (t, u, v) has left child (t, 3ru - v, u) and right child (u, 3us - t, v). Initial Markov triple: (1, 5, 2), initial characteristic number triple: (0, 2, 1). %e A368134 The initial rows of the binary tree are %e A368134 2 %e A368134 5 12 %e A368134 13 75 179 70 %e A368134 34 507 2923 1120 2673 15571 6089 408 %o A368134 (SageMath) %o A368134 rowM = [[1,5,2]] %o A368134 rowU = [[0,2,1]] %o A368134 a368134 = [2] %o A368134 for rw in range(1,6): %o A368134 prevRowM = rowM %o A368134 prevRowU = rowU %o A368134 rowM = [] %o A368134 rowU = [] %o A368134 for i in range(len(prevRowM)): %o A368134 [r,m,s] = prevRowM[i] %o A368134 [t,u,v] = prevRowU[i] %o A368134 ltM = [r,3*r*m - s,m] %o A368134 rtM = [m,3*m*s - r,s] %o A368134 ltU = [t,3*r*u - v,u] %o A368134 rtU = [u,3*u*s - t,v] %o A368134 rowM = rowM + [ltM,rtM] %o A368134 rowU = rowU + [ltU,rtU] %o A368134 a368134 = a368134 + [ltU[1],rtU[1]] %o A368134 a368134 %Y A368134 Cf. A368546. %K A368134 nonn,tabf %O A368134 0,1 %A A368134 _William P. Orrick_, Jan 11 2024