cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368144 Number of ways of tiling the n X n torus up to 90-degree rotations of the square by a tile that is fixed only under 180-degree rotation of the square.

Original entry on oeis.org

1, 4, 24, 1155, 337600, 477339104, 2872202028544, 72057595967327280, 7462505059899321934848, 3169126500571074529208754688, 5492677668532710795071525279789056, 38716571525226776289479030777851808143360, 1106936151351216411420552029913564174524281470976
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A368144[n_] := 1/(4 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 2^((n^2 + 1)/2), 7/4*2^(n^2/2) + 2^(n^2/4)])

A368145 Number of ways of tiling the n X n torus up to 90-degree rotations of the square by an asymmetric tile.

Original entry on oeis.org

1, 23, 7296, 67124336, 11258999068672, 32794211700912314368, 1616901275801313012113145856, 1329227995784915876578744357489750016, 18043230090504974298810923860695296894480941056, 4017345110647475688854905231100098373350012499289786810368
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Comments

M.C. Escher enumerated a(2) = 23 by hand in May 1942, being perhaps the first person to attempt this sort of counting problem. (See Doris Schattschneider's book in the references for more details.)

References

  • Doris Schattschneider, Visions of Symmetry, W.H. Freeman, 1990, pages 44-48.

Crossrefs

Programs

  • Mathematica
    A368145[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 0, 3/4*2^n^2 + 2^(n^2/2)])
Showing 1-2 of 2 results.