cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368149 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 3, 10, 10, 4, 5, 20, 31, 20, 5, 8, 40, 78, 76, 35, 6, 13, 76, 184, 232, 161, 56, 7, 21, 142, 406, 636, 582, 308, 84, 8, 34, 260, 861, 1604, 1831, 1296, 546, 120, 9, 55, 470, 1766, 3820, 5215, 4630, 2640, 912, 165, 10, 89, 840, 3533, 8696
Offset: 1

Views

Author

Clark Kimberling, Dec 25 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    2
   2    4    3
   3   10   10    4
   5   20   31   20    5
   8   40   78   76   35    6
  13   76  184  232  161   56   7
  21  142  406  636  582  308  84  8
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 10*x^2 + 4*x^3, so (T(4,k)) = (3,10,10,4), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A000027 (p(n,n-1)); A000244 (row sums), (p(n,1)); A033999 (alternating row sums), (p(n,-1)); A116415 (p(n,2)), A000748, (p(n,-2)); A152268, (p(n,3)); A190969, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 4*x), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).