This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368150 #8 Dec 30 2023 23:41:06 %S A368150 1,1,3,2,6,8,3,15,25,21,5,30,76,90,55,8,60,188,324,300,144,13,114,439, %T A368150 948,1251,954,377,21,213,961,2529,4207,4527,2939,987,34,390,2026,6246, %U A368150 12606,17154,15646,8850,2584,55,705,4136,14640,34590,56970,65840 %N A368150 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2. %C A368150 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers. %H A368150 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14. %F A368150 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - x^2. %F A368150 p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k). %e A368150 First eight rows: %e A368150 1 %e A368150 1 3 %e A368150 2 6 8 %e A368150 3 15 25 21 %e A368150 5 30 76 90 55 %e A368150 8 60 188 324 300 144 %e A368150 13 114 439 948 1251 954 377 %e A368150 21 213 961 2529 4207 4527 2939 987 %e A368150 Row 4 represents the polynomial p(4,x) = 3 + 15*x + 25*x^2 + 21*x^3, so (T(4,k)) = (3,15,25,21), k=0..3. %t A368150 p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x^2; %t A368150 p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] %t A368150 Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %t A368150 Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %Y A368150 Cf. A000045 (column 1); A001906 (p(n,n-1)); A000302 (row sums), (p(n,1)); A122803 (alternating row sums), (p(n,-1)); A190972 (p(n,2)), A116415, (p(n,-2)); A190990, (p(n,3)); A057084, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368151. %K A368150 nonn,tabl %O A368150 1,3 %A A368150 _Clark Kimberling_, Dec 25 2023