This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368152 #14 Jan 22 2024 06:03:04 %S A368152 1,1,3,4,6,8,7,27,25,21,19,66,126,90,55,40,204,392,504,300,144,97,522, %T A368152 1363,1884,1851,954,377,217,1425,4065,7281,8011,6435,2939,987,508, %U A368152 3642,12332,24606,34044,31446,21524,8850,2584,1159,9441,35236,82020,127830 %N A368152 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 3 - x^2. %C A368152 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers. %H A368152 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), 1-28, Paper No. A14. %F A368152 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 3 - x^2. %F A368152 p(n,x) = k*(b^n - c^n), where k = -1/sqrt(13 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k). %e A368152 First eight rows: %e A368152 1 %e A368152 1 3 %e A368152 4 6 8 %e A368152 7 27 25 21 %e A368152 19 66 126 90 55 %e A368152 40 204 392 504 300 144 %e A368152 97 522 1363 1884 1851 954 377 %e A368152 217 1425 4065 7281 8011 6435 2939 987 %e A368152 Row 4 represents the polynomial p(4,x) = 7 + 27*x + 25*x^2 + 21*x^3, so (T(4,k)) = (7,27,25,21), k=0..3. %t A368152 p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 3 - x^2; %t A368152 p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] %t A368152 Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %t A368152 Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %Y A368152 Cf. A006130 (column 1); A001906 (p(n,n-1)); A090017 (row sums), (p(n,1)); A002605 (alternating row sums), (p(n,-1)); A004187, (p(n,2)); A004254, (p(n,-2)); A190988, (p(n,3)); A190978 (unsigned), (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151. %K A368152 nonn,tabl %O A368152 1,3 %A A368152 _Clark Kimberling_, Jan 20 2024