This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368153 #10 Jan 22 2024 06:03:44 %S A368153 1,1,2,2,1,3,3,4,-2,4,5,5,4,-10,5,8,10,-3,4,-25,6,13,16,1,-29,14,-49, %T A368153 7,21,28,-8,-24,-78,56,-84,8,34,47,-12,-88,-26,-162,168,-132,9,55,80, %U A368153 -31,-140,-200,100,-330,408,-195,10,89,135,-58,-301,-230,-296 %N A368153 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - x^2. %C A368153 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers. %H A368153 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), 1-28, Paper No. A14. %F A368153 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 - 3*x - x^2. %F A368153 p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 - 8*x), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k). %e A368153 First eight rows: %e A368153 1 %e A368153 1 2 %e A368153 2 1 3 %e A368153 3 4 -2 4 %e A368153 5 5 4 -10 5 %e A368153 8 10 -3 4 -25 6 %e A368153 13 16 1 -29 14 -49 7 %e A368153 21 28 -8 -24 -78 56 -84 8 %e A368153 Row 4 represents the polynomial p(4,x) = 3 + 4*x - 2*x^2 + 4*x^3, so (T(4,k)) = (3,4,-2,4), k=0..3. %t A368153 p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - x^2; %t A368153 p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] %t A368153 Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %t A368153 Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %Y A368153 Cf. A000045 (column 1); A000027 (p(n,n-1)); A057083 (row sums), (p(n,1)); A182228 (alternating row sums), (p(n,-1)); A190970, (p(n,2)); A030195, (p(n,-2)); A052918, (p(n,-3)); A190972, (p(n,-4)); A057085, (p(n,-5)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152. %K A368153 sign,tabl %O A368153 1,3 %A A368153 _Clark Kimberling_, Jan 20 2024