This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368154 #10 Jan 22 2024 06:04:05 %S A368154 1,1,3,2,3,8,3,9,7,21,5,15,31,15,55,8,30,53,99,30,144,13,54,124,165, %T A368154 306,54,377,21,99,241,447,481,927,77,987,34,177,487,909,1509,1341, %U A368154 2767,33,2584,55,315,941,1995,3135,4905,3605,8163,-355,6765,89,555 %N A368154 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - x^2. %C A368154 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers. %H A368154 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), 1-28, Paper No. A14. %F A368154 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - 3*x - x^2. %F A368154 p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 - 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k). %e A368154 First eight rows: %e A368154 1 %e A368154 1 3 %e A368154 2 3 8 %e A368154 3 9 7 21 %e A368154 5 15 31 15 55 %e A368154 8 30 53 99 30 144 %e A368154 13 54 124 165 306 54 377 %e A368154 21 99 241 447 481 927 77 987 %K A368154 tabl,sign %O A368154 1,3 %A A368154 _Clark Kimberling_, Jan 20 2024