cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368156 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + x^2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 3, 10, 14, 12, 5, 20, 41, 44, 29, 8, 40, 98, 148, 131, 70, 13, 76, 224, 408, 497, 376, 169, 21, 142, 482, 1044, 1542, 1588, 1052, 408, 34, 260, 1003, 2492, 4351, 5456, 4894, 2888, 985, 55, 470, 2026, 5684, 11359, 16790, 18400, 14672, 7813
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    2
   2    4    5
   3   10   14    12
   5   20   41    44    29
   8   40   98   148   131    70
  13   76  224   408   497   376   169
  21  142  482  1044  1542  1588  1052  408
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 14*x^2 + 12*x^3, so (T(4,k)) = (3,10,14,12), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A000129, (p(n,n-1)); A007482 (row sums), (p(n,1)); A077925 (alternating row sums), (p(n,-1)); A057088, (p(n,2)); A015523, (p(n,-2)); A015568, (p(n,3)); A180250, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368155.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 + x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 4*x + 8*x^2), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).