A368171 a(n) is the smallest divisor d of n such that n/d is a cubefull exponentially odd number (A335988).
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 6, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e <= 2, p^e, If[EvenQ[e], p, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2] <= 2, f[i,1]^f[i,2], if(f[i,2]%2, 1, f[i,1])))};
Formula
Multiplicative with a(p^e) = p^e if e <= 2, a(p^e) = 1 if e is odd and e > 1, and p otherwise.
a(n) = n/A368170(n).
a(n) >= 1, with equality if and only if n is in A335988.
a(n) <= n, with equality if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 1/p^2 - 1/p^3 - 1/p^5 + 1/p^6) = 0.42246686366220037592... .
Comments