This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368181 #34 Dec 22 2023 08:35:30 %S A368181 1,2,4,3,5,6,7,9,8,10,11,12,13,20,22,24,23,25,14,30,15,17,33,26,16,18, %T A368181 19,21,27,28,31,29,34,40,41,32,35,36,38,39,37,42,44,50,43,52,45,46,47, %U A368181 48,49,54,55,57,56,60,53,58,59,62,63,65,70,51,61,64,66,67,69,68,71,73,74,81,90,91,77 %N A368181 a(1) = 1; for n > 1, a(n) is the smallest positive integer that has not yet appeared which shares no digit with the sum of all previous terms a(1)..a(n-1). %C A368181 The sequence is finite; after 14594 terms, where a(14594) = 20858, the sum of all terms is 173658294 which contains the digits 1..9, so the next term does not exist. %C A368181 The largest term is a(12742) = 888888. %H A368181 Scott R. Shannon, <a href="/A368181/b368181.txt">Table of n, a(n) for n = 1..14594</a> %e A368181 a(14) = 20 as the sum of all terms a(1)..a(13) = 91, and 20 is the smallest unused number that does not contain the digits 1 or 9. %o A368181 (Python) %o A368181 from itertools import islice %o A368181 def agen(): %o A368181 s, aset, mink = 0, {0}, 1 %o A368181 while True: %o A368181 k, dset = mink, set(str(s)) %o A368181 if dset >= set("123456789"): break %o A368181 while k in aset or set(str(k)) & dset: k += 1 %o A368181 an = k; aset.add(an); s += an; yield an %o A368181 while mink in aset: mink += 1 %o A368181 print(list(islice(agen(), 80))) # _Michael S. Branicky_, Dec 21 2023 %Y A368181 Cf. A362093, A362075, A342383, A342382. %K A368181 nonn,base,fini,full %O A368181 1,2 %A A368181 _Scott R. Shannon_, Dec 21 2023