This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368184 #6 Dec 18 2023 08:28:33 %S A368184 7,1,4,20,276,320,1088,65856,66112,66624,263232 %N A368184 Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k. %C A368184 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}. %e A368184 The terms together with the corresponding set-systems begin: %e A368184 7: {{1},{2},{1,2}} %e A368184 1: {{1}} %e A368184 4: {{1,2}} %e A368184 20: {{1,2},{1,3}} %e A368184 276: {{1,2},{1,3},{1,4}} %e A368184 320: {{1,2,3},{1,4}} %e A368184 1088: {{1,2,3},{1,2,4}} %e A368184 65856: {{1,2,3},{1,4},{1,5}} %e A368184 66112: {{1,2,3},{2,4},{1,5}} %e A368184 66624: {{1,2,3},{1,2,4},{1,5}} %t A368184 nn=10000; %t A368184 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A368184 q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]],{n,nn}]; %t A368184 k=Max@@Select[Range[Max@@q], SubsetQ[q,Range[#]]&] %t A368184 Table[Position[q,n][[1,1]],{n,0,k}] %Y A368184 For strict sequences: A367910, firsts of A367905, sorted A367911. %Y A368184 For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915. %Y A368184 For sequences w/o distinctness: A368111, firsts of A368109, sorted A368112. %Y A368184 Positions of first appearances in A368183. %Y A368184 The sorted version is A368185. %Y A368184 A048793 lists binary indices, length A000120, sum A029931. %Y A368184 A058891 counts set-systems, covering A003465, connected A323818. %Y A368184 A070939 gives length of binary expansion. %Y A368184 A096111 gives product of binary indices. %Y A368184 Cf. A072639, A253317, A326031, A326702, A326753, A355739, A355741, A367771, A367906, A367907. %K A368184 nonn,more %O A368184 0,1 %A A368184 _Gus Wiseman_, Dec 18 2023