This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368185 #6 Dec 18 2023 08:28:28 %S A368185 1,4,7,20,276,320,1088,65856,66112,66624 %N A368185 Sorted list of positions of first appearances in A368183 (number of sets that can be obtained by choosing a different binary index of each binary index). %C A368185 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}. %e A368185 The terms together with the corresponding set-systems begin: %e A368185 1: {{1}} %e A368185 4: {{1,2}} %e A368185 7: {{1},{2},{1,2}} %e A368185 20: {{1,2},{1,3}} %e A368185 276: {{1,2},{1,3},{1,4}} %e A368185 320: {{1,2,3},{1,4}} %e A368185 1088: {{1,2,3},{1,2,4}} %e A368185 65856: {{1,2,3},{1,4},{1,5}} %e A368185 66112: {{1,2,3},{2,4},{1,5}} %e A368185 66624: {{1,2,3},{1,2,4},{1,5}} %t A368185 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A368185 c=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]],{n,1000}]; %t A368185 Select[Range[Length[c]], FreeQ[Take[c,#-1],c[[#]]]&] %Y A368185 For sequences we have A367911, unsorted A367910, firsts of A367905. %Y A368185 Multisets w/o distinctness: A367915, unsorted A367913, firsts of A367912. %Y A368185 Sequences w/o distinctness: A368112, unsorted A368111, firsts of A368109. %Y A368185 Sorted list of positions of first appearances in A368183. %Y A368185 The unsorted version is A368184. %Y A368185 A048793 lists binary indices, length A000120, sum A029931. %Y A368185 A058891 counts set-systems, covering A003465, connected A323818. %Y A368185 A070939 gives length of binary expansion. %Y A368185 A096111 gives product of binary indices. %Y A368185 Cf. A072639, A253317, A326031, A326702, A326753, A355739, A355741, A367771, A367906, A367907. %K A368185 nonn,more %O A368185 1,2 %A A368185 _Gus Wiseman_, Dec 18 2023