This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368187 #5 Dec 29 2023 10:56:51 %S A368187 2,9,21,25,49,57,115,121,133,159,195,289,361,371,393,455,507,515,529, %T A368187 555,845,897,915,917,933,957,961,1007,1067,1183,1235,1295,1335,1443, %U A368187 1681,2093,2095,2135,2157,2177,2193,2197,2233,2265,2343,2369,2379,2405,2489 %N A368187 Divisor-minimal numbers whose prime indices of prime indices contradict a strict version of the axiom of choice. %C A368187 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A368187 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %H A368187 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %e A368187 The terms together with their prime indices begin: %e A368187 2: {1} %e A368187 9: {2,2} %e A368187 21: {2,4} %e A368187 25: {3,3} %e A368187 49: {4,4} %e A368187 57: {2,8} %e A368187 115: {3,9} %e A368187 121: {5,5} %e A368187 133: {4,8} %e A368187 159: {2,16} %e A368187 195: {2,3,6} %e A368187 289: {7,7} %e A368187 361: {8,8} %e A368187 371: {4,16} %e A368187 393: {2,32} %e A368187 455: {3,4,6} %t A368187 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A368187 vmin[y_]:=Select[y,Function[s, Select[DeleteCases[y,s], Divisible[s,#]&]=={}]]; %t A368187 Select[Range[100],Select[Tuples[prix /@ prix[#]],UnsameQ@@#&]=={}&]//vmin %Y A368187 The version for BII-numbers of set-systems is A368532. %Y A368187 A000110 counts set partitions, non-isomorphic A000041. %Y A368187 A003465 counts covering set-systems, unlabeled A055621. %Y A368187 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A368187 Cf. A134964, A140637, A355529, A367905, A367907. %Y A368187 Cf. A367867, A367903, A368094, A368097, A368413, A368421. %K A368187 nonn %O A368187 1,1 %A A368187 _Gus Wiseman_, Dec 29 2023