This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368197 #39 Aug 25 2024 18:57:24 %S A368197 1,4,4,18,0,9,32,8,0,24,100,0,0,0,25,72,72,36,0,0,36,294,0,0,0,0,0,49, %T A368197 256,64,0,96,0,0,0,96,486,0,144,0,0,0,0,0,99,400,400,0,0,100,0,0,0,0, %U A368197 100,1210,0,0,0,0,0,0,0,0,0,121 %N A368197 Triangle read by rows: T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2. %C A368197 Row n has sum n^3. The number of nonzero terms in row n appears to be A000005(n). It appears that Sum_{k=1..n} T(n,k)*A023900(k) = A063524(n). Main diagonal appears to be A062775. First column appears to be A053191. %C A368197 It appears that when p > 2 in f(x,y,z,p) = x^p + y^p - z^p and T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z,p), n) = k], then Sum_{k=1..n} T(n,k)*A023900(k) is not equal to A063524(n). - _Mats Granvik_, May 07 2024 %F A368197 T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2. %e A368197 Triangle begins: %e A368197 1; %e A368197 4, 4; %e A368197 18, 0, 9; %e A368197 32, 8, 0, 24; %e A368197 100, 0, 0, 0, 25; %e A368197 72, 72, 36, 0, 0, 36; %e A368197 294, 0, 0, 0, 0, 0, 49; %e A368197 256, 64, 0, 96, 0, 0, 0, 96; %e A368197 486, 0, 144, 0, 0, 0, 0, 0, 99; %e A368197 400, 400, 0, 0, 100, 0, 0, 0, 0, 100; %e A368197 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121; %e A368197 ... %t A368197 nn = 11; p = 2; f = x^p + y^p - z^p; Flatten[Table[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {z, 1, n}], {k, 1, n}], {n, 1, nn}]] %Y A368197 Cf. A000578, A000005, A023900, A063524, A062775, A053191, A367689. %K A368197 nonn,tabl %O A368197 1,2 %A A368197 _Mats Granvik_, Dec 16 2023