A368205 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3), with a(0)=1, a(1)=3 and a(2)=7.
1, 3, 7, 14, 25, 40, 56, 63, 37, -71, -350, -945, -2064, -3952, -6783, -10381, -13625, -13330, -2359, 33208, 117672, 288959, 598325, 1099385, 1812546, 2640543, 3197152, 2497824, -1541375, -12816925, -37865849, -86422322, -170718343, -301444536, -476474600, -655816385, -713055419, -351058887, 1028750562, 4501424879, 11797832400, 25361896880, 47988600961
Offset: 0
Keywords
Examples
a(0) = 1, a(1) = 3*a(0) = 3*1 = 3, a(2) = 3*a(1) - 2*a(0) = 3*3 - 2*1 = 7, a(3) = 3*a(2) - 2*a(1) - a(0) = 3*7 - 2*3 - 1 = 14.
Links
- E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
Programs
-
Maple
a:=proc(n) local c1,c2,c3; option remember; c1:=3; c2:=2; c3:=1; if n=0 then 1 elif n=1 then 3 elif n=2 then 7 else c1*a(n-1)-c2*a(n-2)-c3*a(n-3); fi; end; # N. J. A. Sloane, Dec 31 2023 [seq(a(n),n=0..30)];
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = determinant of the n X n Toeplitz Matrix((3,2,-1,0,0,...,0),(3,1,0,0,0,...,0)).
Comments