cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368205 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3), with a(0)=1, a(1)=3 and a(2)=7.

Original entry on oeis.org

1, 3, 7, 14, 25, 40, 56, 63, 37, -71, -350, -945, -2064, -3952, -6783, -10381, -13625, -13330, -2359, 33208, 117672, 288959, 598325, 1099385, 1812546, 2640543, 3197152, 2497824, -1541375, -12816925, -37865849, -86422322, -170718343, -301444536, -476474600, -655816385, -713055419, -351058887, 1028750562, 4501424879, 11797832400, 25361896880, 47988600961
Offset: 0

Views

Author

Raul Prisacariu, Dec 18 2023

Keywords

Comments

Whittaker's Root Series Formula is applied to the polynomial equation -1+2x+3x^2+x^3. The following infinite series involving the Plastic Ratio (rho) is obtained: rho - 1 = 1/2 - 3/(2*7) + 7/(7*21) - 14/(21*65) + 25/(65*200) - 40/(200*616) + 56/(616*1897) - ...
The terms of the sequence appear in the numerators of the infinite sequence (with alternating signs). The denominators of the sequence are formed by multiplying consecutive terms from the sequence A218836.

Examples

			a(0) = 1,
a(1) = 3*a(0) = 3*1 = 3,
a(2) = 3*a(1) - 2*a(0) = 3*3 - 2*1 = 7,
a(3) = 3*a(2) - 2*a(1) - a(0) = 3*7 - 2*3 - 1 = 14.
		

Crossrefs

Cf. A218836 (denominator), A060006.

Programs

  • Maple
    a:=proc(n) local c1,c2,c3;
     option remember;
    c1:=3; c2:=2; c3:=1;
    if n=0 then 1
    elif n=1 then 3
    elif n=2 then 7
    else c1*a(n-1)-c2*a(n-2)-c3*a(n-3); fi;
    end; # N. J. A. Sloane, Dec 31 2023
    [seq(a(n),n=0..30)];

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = determinant of the n X n Toeplitz Matrix((3,2,-1,0,0,...,0),(3,1,0,0,0,...,0)).