cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368206 a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

This page as a plain text file.
%I A368206 #66 Jan 25 2024 19:59:13
%S A368206 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,8,13,0,0,272,0,0,0,
%T A368206 5400,8915,0,0,30433,1590,0,0,68638,73470,0,0,90808,6638072,0,0,
%U A368206 127356,319803,0,0,20130146,559282596,0,0,1507066936,3820244957,0,0
%N A368206 a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).
%p A368206 b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
%p A368206       b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
%p A368206     end:
%p A368206 a:= n-> `if`(irem(n, 4)>1, 0, b(n, n)):
%p A368206 seq(a(n), n=0..43);  # _Alois P. Heinz_, Jan 25 2024
%Y A368206 Cf. A000583, A063890, A158465, A348165, A348892.
%K A368206 nonn
%O A368206 0,22
%A A368206 _Ilya Gutkovskiy_, Jan 25 2024
%E A368206 a(46)-a(59) from _Alois P. Heinz_, Jan 25 2024