cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368210 Irregular triangle T(n,k) read by rows (n >= 1, 0 <= k <= max(A001222([1..n]))), giving the number of k-almost primes in [1,n].

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 1, 4, 3, 1, 1, 4, 4, 1, 1, 5, 4, 1, 1, 5, 4, 2, 1, 6, 4, 2, 1, 6, 5, 2, 1, 6, 6, 2, 1, 6, 6, 2, 1, 1, 7, 6, 2, 1, 1, 7, 6, 3, 1, 1, 8, 6, 3, 1, 1, 8, 6, 4, 1, 1, 8, 7, 4, 1, 1, 8, 8, 4, 1, 1, 9, 8, 4, 1
Offset: 1

Views

Author

Daniel Suteu, Dec 17 2023

Keywords

Comments

The smallest k-almost prime is 2^k, therefore the n-th row has 1+floor(log_2(n)) terms.

Examples

			First few rows are:
1;
1, 1;
1, 2;
1, 2, 1;
1, 3, 1;
1, 3, 2;
1, 4, 2;
1, 4, 2, 1;
1, 4, 3, 1;
1, 4, 4, 1;
...
		

Crossrefs

Programs

  • PARI
    tabf(nn) = for(n=1, nn, my(v=vector(n, j, bigomega(j))); for(k=0, vecmax(v), print1(#select(x->x==k, v), ", ")); print());
    
  • PARI
    almost_prime_count(n,k) = if(k==0, return(n>=1)); if(k==1, return(primepi(n))); (f(m, p, k, j=0)=my(s=sqrtnint(n\m, k), count=0); if(k==2, forprime(q=p, s, count += primepi(n\(m*q)) - j; j+=1); return(count)); forprime(q=p, s, count += f(m*q, q, k-1, j); j+=1); count); f(1, 2, k);
    nth_row(n) = for(k=0, logint(n, 2), print1(almost_prime_count(n, k), ", "));
    tabf(nn) = for(n=1, nn, nth_row(n); print());
    upto(nn) = for(n=1, nn, nth_row(n));
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A368210_T(n,k):
        if k==0: return int(n>=1)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n)) # Chai Wah Wu, Sep 02 2024