This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368213 #49 Dec 18 2023 16:33:12 %S A368213 1,1,1,1,0,2,1,3,0,6,1,0,0,0,24,1,15,40,0,0,120,1,0,0,0,0,0,720,1,105, %T A368213 0,1260,0,0,0,5040,1,0,2240,0,0,0,0,0,40320,1,945,0,0,72576,0,0,0,0, %U A368213 362880,1,0,0,0,0,0,0,0,0,0,3628800,1,10395,246400,1247400,0,6652800,0,0,0,0,0,39916800 %N A368213 Triangular array read by rows: Number of permutations of [n] that factor into exactly k-cycles, ordered by n (rows) and divisors k of n (columns). %D A368213 P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009, pages 120-122. %H A368213 Marko Riedel, math.stackexchange.com, <a href="https://math.stackexchange.com/questions/4828858/">Number of permutations in the symmetric group</a>. %H A368213 Marko Riedel, <a href="/A368213/a368213_1.pdf">Computing the number of permutations of [n] with k m-cycles with analytic combinatorics.</a> %H A368213 Marko Riedel, <a href="/A368213/a368213_2.pdf">Computing the number of permutations of [n] with k m-cycles using the principle of inclusion-exclusion.</a> %F A368213 T(n, k) = n! / ( k^(n/k) * (n/k)! ) if k divides n otherwise 0. %e A368213 Row n=6 is 1, 15, 40, 120 because there is one permutation of [6] consisting of six fixed points, there are 15 permutations consisting of three transpositions, there are forty permutations consisting of two three-cycles and there are one hundred and twenty permutations consisting of just one six-cycle (6!/6). %e A368213 Triangular array starts: %e A368213 [ 1] 1; %e A368213 [ 2] 1, 1; %e A368213 [ 3] 1, 0, 2; %e A368213 [ 4] 1, 3, 0, 6; %e A368213 [ 5] 1, 0, 0, 0, 24; %e A368213 [ 6] 1, 15, 40, 0, 0, 120; %e A368213 [ 7] 1, 0, 0, 0, 0, 0, 720; %e A368213 [ 8] 1, 105, 0, 1260, 0, 0, 0, 5040; %e A368213 [ 9] 1, 0, 2240, 0, 0, 0, 0, 0, 40320; %e A368213 [10] 1, 945, 0, 0, 72576, 0, 0, 0, 0, 362880; %p A368213 T:= (n, m)-> `if`(irem(n,m)=0, n!/m^(n/m)/(n/m)!, 0): %p A368213 seq(seq(T(n, m), m = 1..n), n=1..15); %t A368213 A368213[n_,k_]:=If[Divisible[n,k],n!/(k^(n/k)(n/k)!),0]; %t A368213 Table[A368213[n,k],{n,15},{k,n}] (* _Paolo Xausa_, Dec 18 2023 *) %o A368213 (SageMath) %o A368213 def T(n, d): return factorial(n) // (d ** (n//d) * factorial(n//d)) %o A368213 for n in range(1, 19): %o A368213 print([T(n, d) if n % d == 0 else 0 for d in range(1, n+1)]) %o A368213 # _Peter Luschny_, Dec 17 2023 %Y A368213 Cf. A005225 (row sums), A008290. %Y A368213 Cf. A123023 (column 2), A052502 (column 3), A060706 (column 4). %K A368213 nonn,tabl %O A368213 1,6 %A A368213 _Marko Riedel_, Dec 17 2023