A368217 a(n) is the first number == 1 (mod n) that is the product of n primes, counted by multiplicity.
2, 9, 28, 81, 176, 15625, 288, 6561, 1792, 137781, 17920, 244140625, 30720, 7971615, 311296, 43046721, 1492992, 3814697265625, 2752512, 3486784401, 38797312, 242137805625, 28311552, 59604644775390625, 184549376, 51684605176023, 2583691264, 63546645708225, 9512681472, 41858774825571336448888891
Offset: 1
Keywords
Examples
a(4) = 81 because 81 == 1 (mod 4) and 81 = 3^4 is the product of 4 primes, counted by multiplicity, and no smaller number works.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) uses priqueue; local p, x, Aprimes, v; initialize(Aprimes); p:= 2; while n mod p = 0 do p:= nextprime(p) od: insert([-p^n,p,0],Aprimes); do v:= extract(Aprimes); x:= -v[1]; if x mod n = 1 then return x fi; if v[3] < n then insert([v[1],v[2],v[3]+1],Aprimes); p:= nextprime(v[2]); while n mod p = 0 do p:= nextprime(p) od; x:= x * (p/v[2])^(n-v[3]); insert([-x,p,v[3]],Aprimes); fi; od; end proc: f(1):= 2: map(f, [$1..30]);
Comments