A368218 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal and vertical reflections by a tile that is fixed under horizontal reflection only.
1, 3, 2, 4, 7, 3, 10, 20, 24, 6, 16, 76, 144, 76, 10, 36, 272, 1120, 1056, 288, 20, 64, 1072, 8448, 16576, 8320, 1072, 36, 136, 4160, 66816, 262656, 263680, 65792, 4224, 72, 256, 16576, 528384, 4197376, 8396800, 4197376, 525312, 16576, 136
Offset: 1
Examples
Table begins: n\k | 1 2 3 4 5 6 ----+-------------------------------------------- 1 | 1 3 4 10 16 36 2 | 2 7 20 76 272 1072 3 | 3 24 144 1120 8448 66816 4 | 6 76 1056 16576 262656 4197376 5 | 10 288 8320 263680 8396800 268517376 6 | 20 1072 65792 4197376 268451840 17180065792
Links
- Peter Kagey, Illustration of T(3,2)=24
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-1, A-3.
Programs
-
Mathematica
A368218[n_, m_] := 2^(n*m/2 - 2)*(2^(n*m/2) + Boole[EvenQ[n*m]] + Boole[EvenQ[m]] + If[EvenQ[n], 1, 2^(m/2)])