cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368218 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal and vertical reflections by a tile that is fixed under horizontal reflection only.

Original entry on oeis.org

1, 3, 2, 4, 7, 3, 10, 20, 24, 6, 16, 76, 144, 76, 10, 36, 272, 1120, 1056, 288, 20, 64, 1072, 8448, 16576, 8320, 1072, 36, 136, 4160, 66816, 262656, 263680, 65792, 4224, 72, 256, 16576, 528384, 4197376, 8396800, 4197376, 525312, 16576, 136
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k |  1    2     3       4         5           6
  ----+--------------------------------------------
    1 |  1    3     4      10        16          36
    2 |  2    7    20      76       272        1072
    3 |  3   24   144    1120      8448       66816
    4 |  6   76  1056   16576    262656     4197376
    5 | 10  288  8320  263680   8396800   268517376
    6 | 20 1072 65792 4197376 268451840 17180065792
		

Crossrefs

Programs

  • Mathematica
    A368218[n_, m_] := 2^(n*m/2 - 2)*(2^(n*m/2) + Boole[EvenQ[n*m]] + Boole[EvenQ[m]] + If[EvenQ[n], 1, 2^(m/2)])

A368222 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal reflection by an asymmetric tile.

Original entry on oeis.org

1, 2, 3, 4, 10, 4, 8, 36, 32, 10, 16, 136, 256, 136, 16, 32, 528, 2048, 2080, 512, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 128, 8256, 131072, 524800, 524288, 131328, 8192, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k|  1    2      3       4         5           6
  ---+---------------------------------------------
   1 |  1    2      4       8        16          32
   2 |  3   10     36     136       528        2080
   3 |  4   32    256    2048     16384      131072
   4 | 10  136   2080   32896    524800     8390656
   5 | 16  512  16384  524288  16777216   536870912
   6 | 36 2080 131328 8390656 536887296 34359869440
		

Crossrefs

Programs

  • Mathematica
    A368222[n_, m_] := 2^(n*m/2 - 1) (2^(n*m/2) + Boole[EvenQ[n]])

A368305 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal reflections by two tiles that are both fixed under horizontal reflection.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 14, 13, 6, 8, 40, 44, 34, 8, 14, 108, 218, 226, 78, 13, 20, 362, 1200, 2386, 1184, 237, 18, 36, 1182, 7700, 27936, 26892, 7700, 687, 30, 60, 4150, 51112, 361244, 674384, 354680, 50628, 2299, 46
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2    3      4        5         6
  ---+--------------------------------------
   1 |  2   3    4      6        8        14
   2 |  3   7   14     40      108       362
   3 |  4  13   44    218     1200      7700
   4 |  6  34  226   2386    27936    361244
   5 |  8  78 1184  26892   674384  17920876
   6 | 13 237 7700 354680 17950356 955180432
		

Crossrefs

Programs

  • Mathematica
    A368305[n_, m_]:=1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#]EulerPhi[d]2^(m*n/LCM[#, d])&]]] + n*If[EvenQ[n], DivisorSum[m, EulerPhi[#](2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*4^(m/#))&]/2, DivisorSum[m, EulerPhi[#](2^((n - 1)*m/LCM[2, #])*2^(m/#))&]])
Showing 1-3 of 3 results.